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diffracted to the secondary r.I.p. (the 'transit' reflec- 
tion). Extensive use of this technique leads to essen- 
tially unambiguous indexing. 

4.3. Determination of triplet phases 

The objectives of our initial phase investigations 
(Nicolosi, 1982; Ladell, 1982; Post, 1982; Gong & 
Post, 1983) were limited to the separation of the 
'observed' triplet phases into two groups. The phases 
of all triplets in either group were identical. Their 
nature ('positive' or 'negative') was not specified at 
the separation stage. Gradually, as more phases were 
determined, it became clear that, for r.l.p.s entering 
the Ewald sphere, positive phases were invariably 
associated with the 'attenuation followed by 
enhancement sequence'. These experimental findings 
are inconsistent with the theoretical predictions of 
Hummer & Billy (1982). The criteria outlined above 
were used to assign phases to the triplets listed in 
Table 1 and displayed in Fig. 4. 

Peaks l, 5, 8, 9 and 14 display relatively weak phase 
indications. Careful examination, however, reveals 
accumulations of intensity on one side of each of 
these maxima, near the background line. These 
characterize 'enhancement' for all maxima. In the 
cases cited, where the 'attenuation' is not displayed 
as clearly as might be desired, the phase assignments 
are based primarily on these intensity enhancements. 

In previous investigations of the phases of ger- 
manium triplets by one of the authors (B. Post), only 
eight of the 17 phases were determined. The others 
were rendered indeterminate by the relatively high 
backgrounds and the effects of overlapping peaks in 
the n-beam patterns. Those patterns were recorded 

using polychromatic incident beams from 'fine-focus' 
sources, in conjunction with large source-to-detector 
distances. The latter reduced the incident-beam diver- 
gence to about 2' and made possible the elimination 
of most Kcr 2 from the diffracted beams. 

The biaxial diffractometer provides an incident 
beam whose Kc~2 content we could not detect, and 
an incident-beam divergence of about 30 to 40"; these 
made possible the improved pattern shown in Fig. 4. 

Efforts are under way to reduce the beam diver- 
gence to l0 and 15". Under these conditions the 
angular range of primary radiation 'seen' by the detec- 
tor should be of the order of the half-widths of most 
interactions. The sensitivity of apparatus to very weak 
interactions should then be greatly increased. It 
should also be noted that step sizes of 0.005 ° were 
used to record data shown in Fig. 4. These will be 
reduced, as needed, to 0.001 ° with corresponding 
improvements in resolution. 
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Abstract 

By integrating joint probability distributions of two 
related invariant phases with respect to one of the 
variables over the range 0 to zr, enantiomorph-depen- 
dent phase indications may be obtained. In the 
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present paper the full potential of such a strategy is 
described. For probability distributions correct up to 
and including terms of order N -  i, all cases of interest 
appear to consist of combinations of two invariants 
with one or two structure factors in common. For 
each case the joint probability distribution of the 
phases of such a pair of invariants, given a number 
of suitable structure-factor amplitudes, is derived. 
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Subsequently, all these distribution functions are 
integrated from 0 to 7r with respect to one or other 
variable, thus exploring the full range of enantio- 
morph-dependent distributions. The resulting 
expressions are grouped together according to 
whether the chosen enantiomorph definer is a triplet, 
quartet, quintet or higher-order invariant, thereby 
facilitating their future implementation in direct- 
methods procedures. 

1. Introduction 

Although in many crystal structure determinations 
direct methods have proven to be a successful tech- 
nique for handling the phase problem, the crystal- 
lographer is often confronted with an enantiomorph 
ambiguity when direct methods are applied to non- 
centrosymmetric structures. This ambiguity arises 
because the intensities of diffracted X-rays are 
insensitive to an inversion of the crystal structure if 
the relatively small effects of anomalous dispersion 
are ignored. In direct methods probability distribu- 
tions of phases are obtained directly from these 
intensities and therefore these results should 
necessarily be ambiguous (i.e. any outcome will fit 
both enantiomorphs equally well), unless subsidiary 
enantiomorph-dependent information is employed. 
Up to now only limited attention has been paid to 
the resolution of this problem. Van der Putten, Schenk 
& Hauptman (1980) have described and tested a 
procedure to identify those three-phase structure 
seminvariants and variants in P21, of which the most 
probable phases are either +zr/2 or - I r /2 .  Unique 
phase indications, however, are not obtained by their 
approach. Hauptman (1977) was the first to attain 
this goal. After deriving the joint probability distribu- 
tion of two related quartet phases, given a number 
of structure-factor amplitudes, he arrived at a unique 
phase indication for one of the quartets by assuming 
the other quartet phase to be known. Hauptman & 
Green (1978) used an analogous approach to estimate 
two-phase structure seminvariants in P21. However, 
these approaches depend on the value of the phase 
of the enantiomorph definer, which has to be estab- 
lished first. Recently, Pontenagel (1984) obtained a 
unimodal enantiomorph-dependent probability dis- 
tribution of triple-product phases without assigning 
a specific value to the enantiomorph definer except 
that its phase is restricted to be in the range of 0 to 
zr (or 7r to 2zr). Such a restriction was made by 
integrating the joint probability distribution of two 
related triple-product phases with respect to one of 
the variables over the range 0 to zr. An important 
feature of the resulting enantiomorph-dependent dis- 
tribution, which was successfully applied to the 
determination of a P 1 structure, is the position of the 
mode. Contrary to the enantiomorph-insensitive dis- 
tribution (Cochran, 1955), of which the mode is 

always on zero, it was found that the enantiomorph- 
dependent distribution of a triple-product phase may 
have its mode anywhere between -½7r and +~21~r. 

From this it is anticipated that application of the 
same procedure to quartet phases may lead to a 
distribution function with a single mode anywhere 
between 0 and 2zr as a consequence of the fact that 
(up to and including terms of order N -1) the quartet 
distribution in exponential form appears to have its 
mode on either 0 or 7r. lit should be noted that the 
inclusion of higher-order terms leads to bimodal 
distributions with modes on ~o and 2~'-~o, 
possibly deviating from 0 or z: (Hauptman, 1975b; 
Heinerman, 1976, 1977; Giacovazzo, 1976, 1977).] 

Using the mathematical procedure outlined in the 
previous paper (Pontenagel, 1984), new enantio- 
morph-dependent distribution functions will be 
derived and it will be shown that it is possible to 
obtain unique phase indications anywhere between 
zero and 27r without employing a priori structural 
information or anomalous diffraction data. 

2. Approach 

Two origin-invariant products of structure factors 

lhl,h2,h3 .... ~--- E h ,  Eh2Eh3  . . . E_h,-h2-h3-... 

and 

/kl,k2,k3 .... ~" E k l  E k 2 E k 3  . . . E - k : - k 2 - k 3 - . . .  

will be called single related if they have only one 
structure factor in common, i.e. E_h l_h2_h3_ . . .  = 

E_k!_k2_k3--.... If Friedel's law is supposed to be valid, 
which will be assumed throughout this paper, 
Ii(=Ihl,h2,h3,...) and I2(=lkl,k2,k3,...) are also called 
single related if 11 and the complex conjugate of I2 
have only one structure factor in common. 

Generally, we define two products I~ and 12 to be 
n-fold related if 11 and I2 or 11 and 12" have precisely 
n structure factors in common. Adding or subtracting 
the phases of 11 and 12 eliminates the common struc- 
ture-factor phase(s) and gives the phase of a third 
origin-invariant product of structure factors (I3). For 
example, if 

11 = E h E k E - h - k  and ]2  = E h + k E I E - h - k - I  

then 

13 = EhEk E i E - h - k - l ,  

where the phase 

~ 3 (  ~- ~h,k,I  = ~ h  "~ ~ k  "3t- (~! --  ~ h + k + l )  

of 13 equals the sum of the phases 

~1(--"  ~h ,k  = ~ h  "]- ~ k - -  ~ h + k )  

and 

~t)2( = ~ h + k , i  = ~t)h+k "3t- ~t)i - -  ~ h + k + l ) "  
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In this example Ii and I2 are single related, while Ii 
and I3 and also /2 and 13 are double related. 

The joint probability distribution of the phases ch.k 
and ~h+k.I of tWO single-related triple products has 
been calculated previously (Pontenagel, 1984). The 
resulting conditional joint probability distribution 

P(Tt, T21R~, R2, R3, R4, Rl2, Rl3, R 2 3 ) ,  

given the magnitudes of Eh, Ek, El, Eh+k+i, Eh+k, Eh+! 
and Ek+!, contains a cos (Ti + T2) term, which ulti- 
mately leads to the deviation from 0 of the mode of 
the enantiomorph-dependent distribution of ch.k. It 
is of interest to note that the cos ( T l + T2) term, where 
7"1 + T2 corresponds to the quartet phase ~h.k.!, is due 
to the incorporation of the magnitudes of Eh+, and 
Ek+!, which, together with the magnitude of Eh÷k, 
constitute the cross terms of ch,k.!- 

In our present approach the following strategy is 
adopted to determine which structure factors have to 
be considered in the derivation of the joint probability 
distribution of two related origin-invariant phases: 

(a) define the two origin invariants Ii and I2, which 
are n-fold related; 

(b) determine/3 by adding or subtracting ¢1 of Ii 
and q~2 of 12 such that the phases of the n common 
structure factors cancel; 

(c) include, apart from the structure factors in Ii 
and /2, also the cross terms of Ii, /2 and /3. 

In our calculations we will only consider terms up 
to and including those of order N -l, which implies 
that only cross terms of quartets are of interest. For 
example, for the single-related triple product Ih.k and 
the quartet I h + k , l , m  w e  only need to consider the cross 
terms of I h + k , l .  m and not those of the quintet Ih,k, l ,m" 

Moreover, the restriction limits our calculations to 
those combinations of related invariants for which 
at least one invariant is a triplet or a quartet (see 
Table 1 ). 

For each combination three different joint proba- 
bility distributions P(~:l,~:2lR's) of two related 
invariant phases, given the relevant structure-factor 
amplitudes, can be calculated. (El and ~:2 correspond 
to the phases of Ii and 12 or to Ii and 13 or to /2  and 
13, respectively.) For case 1 (see Table 1) we will give 
two of the three distributions to show that they are 
easily obtained from each other by simple substitu- 
tions (§ 3a);  for all other cases only the distributions 
of the phases o f / i  and 12 will be given (§§ 3b-3g). 
From the 21 available P(¢l, ~:21R's) functions 42 enan- 
tiomorph-dependent probability distributions can be 
calculated by integrating over the range 0 to 7r (or 7r 
to 27r), with respect to either ~:l or ~:2. Only a limited 
number of them appears to depend on the phase of 
an origin invariant when only terms up to and includ- 
ing order N- !  are considered. In § 4 all these distribu- 
tions are grouped together according to whether the 
chosen enantiomorph definer is a triplet, quartet, 
quintet or higher-order invariant. 

Table 1. Relevant combinations of related invariants 
when only terms up to and including order 1/ N are 

considered in the probability distributions 

Case I, 12 13 
1 lhj, lh+k.I lh.kJ (triplet, triplet, quartet) 
2 lh.k /h+k.l.m /h.k.l.m (triplet, quartet, quintet) 
3 /h.k /h+kJ.m.n. lh.k.I ........ [triplet. M-tel, ( M + 1 )-tet; M > 5] 
4 /h.k.I /h+k+l.m.n /h.k.l.m.n (quartet, quartet, sextet) 
5 lh.k,I lh+k+lom,n.r, lh.k.l.m,n.r. [quartet. M-let, (M +2)-tet; M > 5] 
6 l,.kJ /-I.h+k+l.m lh,k.m (quartet. quartet, quartet) 
7 lh.k.I /-I.h+k+l,m,n. /h.k.m.n. (quartet, M-tel, M-tet; M->5) 

3. Joint probability distributions of the phases of two 
related invariants 

All distributions given in this section are correct up 
to and including terms of order N -I. They were 
obtained by calculations via the joint probability 
distributions of the relevant individual structure fac- 
tors, which, for cases 1, 2 and 6, could be obtained 
from the literature (Hauptman, 1975a; Fortier & 
Hauptman, 1977; Heinerman, 1976; Giacovazzo, 
1976; Hauptman, t977), while for cases 3, 4, 5 and 
7 the distributions had to be derived via the charac- 
teristic functions. None of these calculations will be 
given in this paper. However, details of a simplified 
procedure, which appeared to give the same results, 
are given in Appendix I. 

In the following, the symbol C will be used to 
indicate an appropriate normalizing constant. 

3(a) Triplet, triplet, quartet (case 1) 

The joint probability distribution 

P(TI, T21RI, R2, RI2, R3, R4, Ri3, R23) 

of ~h.k and ~h+k.I, given the magnitudes of Eh, Ek, 
E h + k ,  E l ,  E h + k + l ,  E h +  ! and E k + l ,  w a s  calculated by 
Pontenagel (1984): 

P(TI, T21R's)= C exp [2N-I/2RIR2RI2 cos Tl 

+2N-I/2R3RaRI2 cos 7"2 

+2N-l(R23 + R~3-2 ) 

×RIR2R3R4cos (TI + T2)]. ( l a )  

Since ~h,k+~h÷k,I-- ~h,k,'-- 0 (the three invariants 
form an identity), the joint probability distribution 
of a triple-product phase and a double-related quartet 
phase is easily obtained from ( la )  by substituting 
Ti = Q -  I"2: 

P(T2, QIR's) = C exp [2N-I/2R3R4RI2 cos T2 

+2N-1/2R1R2RI2 cos (Q - 7"2) 

+ 2N-l (  R23 + R23- 2 ) 

x Ri R2R3R4 cos Q]. (1 b) 

In the same way the substitution T2 = Q -  Tl can be 
used to obtain a third distribution function. In this 
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case the result is analogous to (lb), but in general 
three different formulae are obtained by the respective 
substitutions. 

3(b) Triplet, quartet, quintet (case 2) 

The joint probability distribution 

P(T, QIR~, RE, R,2, R3, R4, Rs, R34, R35, R45) 

of ~Ph,k and ~Ph+k,~,m, given the magnitudes of Eh, Ek, 
Eh+k, El, Era, Eh+k+l+m, El+m, Eh+k+m and Eh+k+l, 
appears to be 

P(T, QJR's) = C exp [2N-~/ERIR2R~2 cos T 

+ 2N-~(R24 + g~5 + R25 - 2) 

x RIERaR4R5 cos Q]. (2) 

The result was obtained from the previously pub- 
lished P~5 distribution [Fortier & Hauptman, (1977); 
after disregarding all terms of order N -3/2 and fixing 
the magnitudes, (2) is obtained by integrating with 
respect to the phases subject to the conditions 
~1 ÷~2--~12 = T and ~12÷(~3 ÷~04--~5 = Q]. 

3(c) Triplet, M-tet, (M +l)-tet; M>-5 (case 3) 

The joint probability distribution 

P(T, MIRI, g2, gl2, g3, g4, Rs , . . . )  

of q~h,k and q~h+k,~,m,. ..... given the magnitudes of Eh 
and Ek and all the magnitudes of the structure factors 
in Ih+k,,,m,. ..... was found to be 

P( T, MIR's) = C exp [2N-~/2R~R2R~2 cos T], (3) 

which, however, does not depend on the phase of the 
M-tet. 

3(d) Quartet, quartet, sextet (case 4) 

The joint probability distribution 

P(QI, Q2IR,, R2, R3, R4, R~, R6, 

R7, RI2, RI3, R23, R45, R46, R56) 

of ~h,k,1 and ~%+k÷~,m,., given the magnitudes of Eh, 
Ek, El, Eh+k+l, Era, E., Eh+k+l+m+., Eh+k, Eh+~, Ek+l, 
Eh+k+l+m, Eh+k+l+n and Era+., appears to be 

P(Q~, Q:IR's) = C exp [2N-l(R22 + R23 + R23-2) 

× RI R2R3R4 cos Ql 

+2N-1(R425 + R 2 + R26- 2) 

x R, RsR~R7 cos Q~]. (4) 

3(e) Quartet, M-tet, (M +2)-tet; M>_ 5 (case 5) 

The joint probability distribution 

P(Q, MIR~, R2, R3, R4, 

Rs, R6, R7,. . .  ,R12, Ri3, R23) 

of ~Ph,k,. and ~%+k+,,m,.,r ..... given IE~l, led, led, all the 
magnitudes of the structure factors in lh÷k÷~ .......... and 
IE~÷kl, IE~÷,l and IEk÷,l, was calculated to be 

P(Q, MIR's) = C exp [2N-'(RE2 + R23 + R23 - 2) 

x R~R2R3R4 cos Q]. (5) 

As for case 3, this distribution does not depend on 
the phase of the M-tet. 

3(f)  Quartet, quartet, quartet (case 6) 

For the joint probability distribution 

P(Q1, Q21RI, R2, R3, R4, Rs, R6, 

RI2, RI3, R23, R35, R45, RIS, R25) 

of ~Pn,k,~ and ~P-l,h+k+~,m, given the magnitudes of Eh, 
Ek, El, Eh+k÷~, Era, Eh+k+., Eh+k, Eh+l, Ek÷l, E~-m, 
Eh+k+l+m, Eh+ m and Ek+m, the following expression 
was obtained from Hauptman (1977) after rewriting 
his formula (2.13) in exponential form. 

P(Q~, QEIR's)= C exp [EN-l(RE2 + R23 + R23-2) 

× RIR2R3R4 cos Ql 

+ 2N-I(R22 + R25 + R25 - 2) 

× R3R4RsR 6 cos Q2 

+ 2N-I(R22 + Ri25 + R25 - 2) 

×R~R2RsR6cos(QI + Q2)]- (6) 

3(g) Quartet, M-tet, M-tet; M>-5 (case 7) 

The joint probability distribution 

P(Q, MIR~, R2, R3, R4, Rs, R6,. • •, R~2, Rl3, R23) 

of Ch,k,l and ~0_l,h+k+ 1 . . . . . . . . .  given IEhl, lEd, lEd and 
all the magnitudes of the structure factors in 
I-l,h+k+l,u .... and IEn+kl, IEh+d and IEk+d, appears to 
be 

P(Q, MIR's) = C exp [2N-1(R22 + R23 + R23 - 2) 

× RIR2R3R 4 cos Q]. (7) 

Again, as for cases 3 and 5, this distribution does not 
depend on the phase of the M-tet. 

4. The enantiomorph-dependent distribution functions 

From a joint probability distribution P(~:I, SO2[ R's) of 
two related invariant phases tp~ and ~02, given a num- 
ber of structure-factor amplitudes, an enantiomorph- 
dependent distribution can be obtained by integrating 
with respect to ~2 over the range 0 to or. This distribu- 
tion will be denoted by P(~[R 's ;  0~b~2 ' ( " / ' / r ) .  In 
Appendix II a general expression is derived for the 
resulting formula. As an enantiomorph can be chosen 
only once, it is essential to state explicitly which 
invariant phase is restricted. This implies that the 
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reciprocal vectors corresponding to the restricted 
invariant are no longer arbitrary and therefore the 
derived enantiomorph-dependent  distributions can 
only be applied to a subset of the available invariants. 
For example, if in case 1 Ch,~, is restricted, the 
reciprocal vectors h and k are specified and con- 
sequently only ! can be chosen arbitrary throughout 
reciprocal space. Therefore, the number of invariant 
phases to which the enantiomorph-dependent distri- 
bution P(TEI R's;  0-< T~ < 70 of ~)h+k.I can be applied 
is of order Y, where Y is the number of structure 
factors from which the invariants are constructed. As 
the enantiomorph-dependent  distributions of Ch,~ and 
~0k, 1 are affected by the same ~Oh,k the total number of 
triple products with an enantiomorph-dependent 
phase indication will be of order 3 Y. This number of 
invariants to which a distribution can be applied will 
be given for all formulae. 

4(a) Triplets 

If an enantiomorph is chosen by restricting a triple- 
product phase to the range 0 to zr we obtain from 
( l a )  (for 3 Y triple products): 

P( TIIR's; 0 < -- T2< 77") 

= C exp [2N-1/2RIRERI2 cos Tl 

-4zr  -~ N-~(R23 + REa-2)R~R2R3R4 sin T~]; 

(8a) 

and from ( lb)  (for 3 Y quartets)" 

P(QIR's;  0 < - T2 < ~) 

= C exp [4~-IN-i /2RIR2RI2 sin Q 

+ 2N- ' (R22  + R2a + R23 - 2)R,R2R3R4 cos Q 
- 2  - 1  2 2 2 - 8 ~  N R~RER~2sinEQ] (8b) 

and from (2), after substituting Q = F -  T: 

P(F[R's;  0 < - T <  rr) 

= C exp [477" -1N-l(R324 + R25 + R2s -  2) 

x R~2R3R4R5 sin F], (8c) 

which is applicable to 3 y2 quintet phases (l and m 
arbitrary). 

4(b) Quartets 

After restricting a quartet phase to the range 0 to 7r 
we obtain from ( lb)  (for six triplet phases): 

P( T2IR's; 0 < - Q <  zr) 

= C exp [2N-l/2R3R4R12 cos T2 

+4rr-lN-l /2RlR2RI2 sin T2 
n - 2  ~ , r -1  n 2  n 2  r~2 -~z r  1,~ ~ l~2~12s in  2 T2]; (9a) 

from (6) (for 6 Y quartet phases): 

P( QllR's; 0 < - Q2 < I7") 

-- C exp [2N-~(R~2 + R~3 + R23-  2) 

X RIR2R3R 4 cos Q~ 

-4zr  -~ N-~( R22 + R~5 + R25- 2) 

x R~R2R5R6 sin Q~]; (9b) 

from (2), after substituting T = F -  Q" 

P( F[R's; 0 <- Q <  77) 

= C exp [4~-lN-I /2RiR2Rt2 sin F 
_ 87r-2 N - l  la2 D2 D2 • -!.-2.-12 sin 2 F], (9c) 

which is applicable to 4 Y quintet phases; and from 
(4), after substituting Q~ -- S -  Q2: 

P(SIR's;  0<_ Q2 < ~r) 

= C exp [4zr -t N-i(R22 + R~3 + gg3-  2) 

x RIR2RaR4 sin S], (9d) 

which is applicable to 4 y2 sextet phases. 

4(c) Quintets 

By integrating a quintet phase from 0 to zr we 
obtain from (2), after substituting Q = F -  T: 

P( TIR's; 0 < - F <  zr) 

= C exp [2N-~/2R~R2R~2 cos T 

+ 4rr- '  N- ' (R24 + R25 + R25-  2) 

×Rl2R3R4R5 sin T], (10a) 

which is applicable to ten triple-product phases; and 
also from (2), after substituting T = F -  Q: 

P( QIR's; 0 < _ F <  or) 

= C exp [4¢r-lN-i/2RiR2RI2 sin Q 

+2N- ' (R32 ,+R25+ 2 R45-2)  

x RI2R3R4R5 cos Q 

__ 8 , t T - 2 N - I D 2 D 2 D  2 • . i . .2 . . ,2  sin 2 Q], (10b) 

which is applicable to ten quartet phases. 
From (7), for M - - 5  we obtain, after substituting 

Q = F 2 - F x "  

P(FI[R 's ;  0_< F2 < It) 

= C exp [4zr-' N-~(R~2 + R23 + R23- 2) 

x RIR2R3R, sin F1], (10c) 

which is applicable to 10 Y quintet phases. From (3), 
for M = 5 we obtain, after substituting T = S -  F: 

P(S[R's; 0 < - F <  at) 

= C exp [4rr-IN-1/2R~R2RI2 sin S 
]~d'- I 1~2 1~2 l~2 -817"-2 . . . .  1"'2"'12 sin 2 S], (10d) 
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Table 2. Summary of enantiomorph-dependent distributions 

Related 
Enantiomorph invariant Maximum number 

definer (~:) P(~IR's; 0 -< Z-tet phase < ~r) of related invariants Equation 
I T(=Z) N " : c o s - N  ' s i n  3 Y  (8a)  

Triplet  ( Z  = 3) Q(=Z + 1) N -I/2 sin + N -1 c o s -  N - I  sin 2 3 Y (Sb) 
F(=Z +2)  N - I  sin 3 y2 (8c) 

I T(=Z- 1) N -I/2 cos + N -1/2 s i n -  N - I  sin 2 6 (9a)  

Q ( = Z )  N -1 c o s -  N - I  sin 6 Y  (9b) 
Quartet  ( z  = 4) F ( = Z  + 1 ) N -1/2 sin - N - I  sin 2 4 Y (9c) 

S(=Z +2)  N -1 sin 4 Y  2 (9d)  

f T(=Z-2) N -1/2 cos + N - I  sin 10 (10a) 
Q(=Z- 1) N -I/2 sin + N - l  cos - N - I  sin 2 10 (10b) 

Quinte t  ( z  = 5) F ( = Z )  N - l  sin 10 Y (10c) 
S(=Z + 1) N -t/2 s i n -  N -~ sin 2 5Y (10d) 

H ( = Z  + 2) N - I  sin 5 y2 (10e) 

Q ( = Z - 2 )  N - t  c o s + N  - l  sin 20 - -  
F(=Z- 1) N -~/2 s i n -  N -~ sin 2 15 - -  

Sextet ( Z  = 6) S ( = Z )  N - I  sin 15 Y - -  
H(=Z + 1) N -I/2 s i n -  N -1 sin 2 6 Y - -  

O ( = Z  +2)  N -~ sin 6 Y  2 - -  

which is applicable to 5 Y sextet phases; and from respectively, where Y is the number of structure 
(5) for M = 5 we obtain after substituting Q = H -  F: factors from which the invariants are constructed. 

All enantiomorph-dependent distributions can be 
P(HIR's; 0<-- F <  ¢r) written as 

= C exp [47r -l N-I(R22 + R23 + R223- 2) P(~:~IR's; 0 -< ~:2 < 7r) 

xR~R2R3R4sinH], (10e) =Cexp[acos¢ l+bs in¢~+cs in2¢l] ,  (11) 

which is applicable to 5 y2 heptet phases, where ~:~ and ~:2 correspond to the phases of two 

4(d) Sextet and higher-order invariants 

When a sextet phase is restricted (4) will lead to an 
enantiomorph-dependent probability distribution for 
20 different quartets. Furthermore, (3) with M = 5 
and (7), (3) and (5) with M = 6 lead to distributions 
for quintets, sextets, heptets and octets, respectively. 
Analogous results will be obtained when higher-order 
invariants are used to resolve the enantiomorph 
ambiguity. In general, when a Z-tet phase is restricted 
( Z >  6), (3), (5) and (7) will lead to enantiomorph- 
dependent probability distributions for ( Z - 2 ) - ,  
(Z - 1)-, Z-, (Z + 1)- and (Z +2)-tet phases. All for- 
mulae can easily be obtained from (1) to (7) and 
Appendix II, and will not be given here. 

5. Discussion 

From the results in § 4, summarized in Table 2, it 
follows that the choice of an enantiomorph by restrict- 
ing a Z-tet phase (Z>_ 3) to the range 0 to zr (Tr to 
27r) leads to enantiomorph-dependent probability 
distributions for ( Z - 2 ) - ,  ( Z -  1)-, Z-, (Z + 1)- and 
(Z +2)-tet phases.* The formulae are applicable to 
about yO, yO, y~, y~ and y2 related invariant phases, 

* H o w e v e r ,  n o t e  t h a t  o r i g i n - i n v a r i a n t  p h a s e s  o f  o r d e r  less  t h a n  

t h r e e  a r e  i d e n t i c a l  t o  0 i f  t h e  r e l a t i v e l y  s m a l l  ef fec ts  o f  a n o m a l o u s  
d i s p e r s i o n  a r e  n e g l e c t e d .  

related invariants, C is a suitable normalizing con- 
stant and a, b and c are known parameters depending 
on the R's  and on N. Both a and b can be of order 
N -1/2 or N -l ,  while c = - lb2  if b is of order N -1/2 
or c = 0  if b is of order N -l. In the latter case (11) 
can be written as a Von Mises distribution: 

P(~llR's; O<-~2<zt)=C e x p [ Q c o s ( ~ - q ) ] ,  (12) 

where Q cos q = a and Q sin q = b. 
From § 4 it follows that such a unimodal symmetric 

distribution is obtained for all ( Z - 2 ) - ,  Z- and 
(Z +2)-tet phases. The mode of (12) can be anywhere 
between 0 and 2zr, depending on the values of a and 
b. I f a - > 0 a n d b - > 0 ( n o t a = b = 0 )  then0-<q<-½7r; 
if a - 0  and b - 0  then ½zr<_q<_Tr etc. In (8a) a is 
always positive, while the sign of b depends on Ri3 
and R23. Consequently, the mode of (8a) can only 

1 I be found between -~Tr and -t-~Tr as has already been 
mentioned (Pontenagel, 1984). Equation (8c) is an 

1 example of a distribution with a mode either on - ~ r  
or on -~2rr, while (9b) can have its mode anywhere 
between 0 and 2~r. The latter result is obtained by 
restricting a quartet phase ~O_l,h+k+l, m to the range 0 
to zr, while now both a and b can be positive or 
negative, depending on the cross-term amplitudes of 
the double-related quartets Ih.k,, and Ih,k,m. 

For ( Z - 1 ) -  and (Z + 1)-tet phases, the enantio- 
morph-dependent sine term in (11) is of order N -~/2 
and the parameter c equals -½b 2. Consequently, (11) 
cannot be written as a Von Mises distribution if an 
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accuracy up to and including terms of order N-~ is 
required, which makes it somewhat more intricate to 
obtain the mode. 

A second point of interest is the relationship 
between (8a) and (8b). By comparing these two distri- 
butions it appears that the conditions for which they 
are valid are identical (the same amplitudes are given 
and in both cases a triple product is used as an 
enantiomorph definer). Therefore, it is anticipated 
that the amount of information to be gained from the 
two distributions must be the same, although the 
actual form in which it is presented differs consider- 
ably: (8 a) describes individual triple-product phases, 
while (8b) concerns sums of two single-related triple- 
product phases. It will depend on the chosen strategy 
to process the estimated invariants which of the distri- 
butions is to be preferred. 

In the third place, we want to draw attention to 
the difficulties encountered in the definitions of neigh- 
bourhoods and/or  phasing shells of invariants, after 
an enantiomorph has been chosen. In the previous 
paper (Pontenagel, 1984) this subject was discussed 
but the conclusion that our enantiomorph-dependent 
approach must lead to a reconsideration of the neigh- 
bourhood/phasing shell concept is generally appli- 
cable. As an example, it can be seen in (8c) that the 
first neighbourhood of the quintet Ih,k,l,m is only partly 
present in the main term of the probability distribu- 
tion of ~0h.k.,.m (R~ and R2 do not appear in the N -~ 
order term). From this it is concluded that, once ~0h.k 
is restricted to the range 0 to 7r, all double-related 
quintet phases ~0h.k.~.m will be distributed according 
to (8c), irrespective of the actual values of IEnl and 
led. Similar conclusions can be drawn on all enan- 
tiomorph-sensitive distributions. 

6. Conclusions 

From § 4 it follows that the choice of an enantiomorph 
by restricting a Z-tet phase to the range 0 to 7r leads 
to a number of enantiomorph-dependent phase rela- 
tions. Although this number is approximately 
independent of the chosen enantiomorph definer, the 
number of reliable phase indications may differ con- 
siderably when different invariants are restricted. This 
indicates that new procedures have to be developed 
to determine the 'best' enantiomorph definer for a 
particular problem. In favourable cases one could 
obtain many reliable phase indications anywhere 
between 0 and 27r, thus breaking the systematics of 
the all-zero or rr estimates inherent to the use of 
enantiomorph-independent distributions. As the 
introduction of false symmetry is avoided as much 
as possible by using such a novel strategy, a sub- 
sequent determination of structure-factor phases is 
not expected to run off the track as easily as may 
happen when more conventional direct methods are 
applied. 

APPENDIX I 
A simplified procedure to calculate the conditional joint 
probability distribution of the phases of two related 

invariants 

A distribution P(~t, ~:2[R's) of the phases of two 
invariants I1 and I2, given the amplitudes of a number 
of structure factors, can easily be determined if the 
following considerations are assumed to be valid: 

(1) If the origin of the crystal structure has not yet 
been specified, only origin-invariant phase combina- 
tions appear in the distribution functions. 

(2) If the enantiomorph ambiguity has not yet been 
resolved, all distributions P(~:~,~2IR's) should be 
even functions with respect to ~:~ and ~2, i.e. 
P(~:~, ~:21R's) should be invariant with respect to a 
simultaneous change of sign of the two variables. 
Therefore, we assume that only cosines of origin- 
invariant phase combinations can be present. 

(3) Assuming that all triple-product terms are of 
order N -~/2, while quartet phases will only appear 
in the N-~ order terms, only triplet and quartet phase 
combinations are of interest for P(~,, ~:2[R's) to be 
correct up to and including terms of order N-~. 

(4) Up to and including terms of order N-~, the 
conditional probability distribution of a triple- 
produce phase ~h,k is given by the Cochran distri- 
bution 

P(¢h,klR's) = C exp [2S-~/2RngkRh+k cos ~:h,k], (l.1) 

no matter which or how many extra amplitudes are 
given. This statement is based on the knowledge that 
the second neighbourhood and/or  the second phasing 
shell of ~0h.k only affects the N -3/2 order terms of the 
probability distribution of ~0h.k. 

(5) Likewise, the conditional probability distribu- 
tion of ~0h,k.~, correct up to and including terms of 
order N -~, is given by 

P(&k,,IR's) 

= C exp [2N-'(R2+k + R2+, + R~,+,- 2) 

× RhRkR, Rh+k+l COS SCh.k.i] (I.2) 

irrespective of the extra amplitudes that are supposed 
to be given apart from the first and second neighbour- 
hoods of ~Ph.k.l. 

Considerations 1 to 5 are sufficient to obtain the 
conditional joint probability distribution of two 
arbitrary invariant phases ~p, and ~P2 given an arbitrary 
set of structure-factor amplitudes. The desired distri- 
butions can always be written as 

P(sCl, ~2[R's) = C exp [Al cos ~l +A2 cos ~:2 

+ A3 cos (s¢1 + ~:2) + A4 cos (~:,- s¢2)] 

(I.3) 

if only terms up to and including order N -~ are 
considered. After specifying the nature of ~1 and ~:2, 
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the order of the parameters A i ( i =  1, 2, 3, 4) can be 
determined. For example, if ~o~ and ~o2 are two 
single-related quartet phases q~h,k,I and ~0h+k+~,,,.n the 
parameters Al and A2 will both be of order N -l ,  
while A3 and A4 can be put equal to zero as (qh + q~2) 
and (~0~-c¢2) lead to a sextet and an octet phase 
combination, respectively. The exact form of A l and 
A2 depends on the given set of structure-factor ampli- 
tudes and can be determined by comparing the two 
marginal distributions P(¢ilR's) and P(¢21R's) 
obtained from (1.3) with the quartet distribution (1.2). 
For example, if the given set of amplitudes is sup- 
posed to consist of led, lEd, lEd, I Eh+k+d, [Eml, I E.l, 
I Eh+k+,+m+.l, I En+d, I Eh+,l, I Ek+,l, I En+k+,+ml, 
IEh+k+~+.[ and IEm+.l (case 4 of the main text) we 
obtain from (I.2): 

P(¢IIRI, R2, R3, R4, Rs, R6, 

R7, Rt2, RI3, R23, R45, R46, R56) 

= C exp [2N-l(R22 + R~3 + R223- 2) 

x Rt  R2R3R4 cos ~1] (I.4) 

and 

text can be written as 

P(s~l, ¢2[R's) = C exp[x cos ¢1 + y  cos ¢2 

+ z cos (¢, + ¢2)], (II.1) 

where x, y and z are at least of order N -I/2 

By expanding the terms containing ~:2 in a power 
series we obtain up to and including terms of order 
N - I .  

P(s~l, CxIR's) = C exp [x cos s~t] 

x[1 +y  cos s~2 +z  cos (~:t + ~:2) 

+½y2 COS 2 ¢2 +½ z2 COS2 (¢i + ¢2) 

+ yz  cos ¢~ cos (¢t + ¢2)]. (II.2) 

The enantiomorph-dependent distribution P(¢l[R's;  
0--<¢2<7r) is obtained by integrating (II.2) with 
respect to ¢2 from 0 to rr: 

P(¢,IR's;  0_< ¢2 < 7/') 

= C exp [x cos  Ct] 

x 7r[1 - 2 r r  -1 z sin ~:l +½yz cos ~:1], (II.3) 

P(sC21R's) = C exp [2N-'(R425 + R426 + R~6- 2) 

× R4RsR6R7  cos be2]. (I.5) 

The two marginal distributions can also be obtained 
from P(¢t, ¢21R's) by integrating with respect to ¢1 
or s¢2 from 0 to 2¢r, after expanding P(¢t, ¢2]R's) in 
a power series. 

The results are (in exponential form) 

P(¢IIR's) = C exp [A, cos ¢,1 (1.6) 

and 

P(~21R's) = C exp [A 2 cos ~:2]. (I.7) 

where terms of order N -l,  not depending on set, have 
been omitted. 

The power series can be written in exponential 
form [using 1 + u  - exp (u -½u2)]: 

P(¢IlR's;  0---- ¢2 < ~r) 

= C exp [(x +½yz) cos ~t -27 r - l z  sin Ct 

-27r  -2z2 sin 2 Ct]. (II.4) 

For the other enantiomorph, which implies 7 r -  ¢2 < 
2rr, only the sign of the 27r-lz sin ~ term has to be 
changed. 

Therefore, we conclude that 

P(~l, ~:21R's) = C exp [2N-I(R~2 + R~3 + R23 - 2) 

× R l R 2 R 3 R  4 COS ~1 

+ 2N-I(R425 + R26 + R26 - 2) 

x R4RsR6R7  cos ¢2]. (I.8) 

In the same way, all distributions 1-7 of the main 
text can be obtained. 

APPENDIX II 
Derivation of the enantiomorph-dependent distribution 

functions 

All distributions of two invariant phases of the main 
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